رویکرد ماتریسی محاسبات کسری گسسته: شبکه های غیرهم طول،با متغیر طول پله ای و مرتبه های توزیع شده

ساخت وبلاگ

Abstract

In this paper, we further develop Podlubny’s matrix approach to discretization of integrals and derivatives of noninteger order. Numerical integration and differentiation on nonequidistant grids is introduced and illustrated by several examples of numerical solution of differential equations with fractional derivatives of constant orders and with distributedorder derivatives. In this paper, for the first time, we present a variablesteplength approach that we call ‘the method of large steps’, because it is applied in combination with the matrix approach for each ‘large step’. This new method is also illustrated by an easytofollow example. The presented approach allows fractionalorder and distributedorder differentiation and integration of nonuniformly sampled signals, and opens the way to development of variableand adaptivesteplength techniques for fractionaland distributedorder
differential equations.

References
1. ↵Podlubny I. 1999 Fractional differential equations. San
Diego, CA: Academic Press.
2. ↵Podlubny I. 2000 Matrix approach to discrete fractional
calculus. Fract. Calc. Appl. Anal. 3, 359–386.
doi:10.1016/j.jcp.2009.01.014
(doi:10.1016/j.jcp.2009.01.014) CrossRef Google Scholar
3. ↵Podlubny I, Skovranek T, Vinagre Jara BM. 2008 Matrix
approach to discretization of ODEs and PDEs of arbitrary real
order (a MATLAB toolbox). See
http://www.mathworks.com/matlabcentral/fileexchange/22071.
Google Scholar
4. ↵Podlubny I, Skovranek T, Vinagre Jara BM. 2009 Matrix
approach to discretization of ordinary and partial differential
equations of arbitrary real order: the Matlab toolbox. In Proc.
ASME 2009 IDETC/CIE 2009, San Diego, CA, 30 August–2
September, 2009. Article no. DETC200986944.
Google Scholar
5. ↵Samko S, Kilbas A, Marichev O. 1993 Fractional integrals
and derivatives: theory and applications. Yverdon,
Switzerland: Gordon and Breach Science Publishers.
6. ↵Kilbas AA, Srivastava HM, Trujillo JJ. 2006 Theory and
applications of fractional differential equations. NorthHolland
Mathematics Studies, vol. 204. Amsterdam, The Netherlands:
Elsevier.

7. ↵Podlubny I, Chechkin A, Skovranek T, Chen YQ, Vinagre
Jara BM. 2009 Matrix approach to discrete fractional calculus.
II. Partial fractional differential equations. J. Comput. Phys.
228, 3137–3153. doi:10.1016/j.jcp.2009.01.014
(doi:10.1016/j.jcp.2009.01.014) CrossRef Web of Science
Google Scholar
8. ↵Jiao Z, Chen YQ, Podlubny I. 2012 Distributedorder
dynamic systems. Berlin, Germany: Springer.
9. ↵Caputo M. 1969 Elasticità e dissipazione. Bologna, Italy:
Zanichelli.
10. ↵Caputo M. 1995 Mean fractionalorderderivatives
differential equations and filters. Annali dell’Universita di
Ferrara 41, 73–84. doi:10.1007/BF02826009
(doi:10.1007/BF02826009) CrossRef Google Scholar
11. ↵Podlubny I. 2012 Matrix approach to distributedorder
ODEs
and PDEs. See
http://www.mathworks.com/matlabcentral/fileexchange/.
Google Scholar
12. ↵Lorenzo CF, Hartley T. 2000 Initialized fractional calculus.
Technical Report NASA/TP2000209943.
Glenn Research
Center. Google Scholar
13. ↵Lorenzo CF, Hartley T. 2007 Initialization, conceptualization,
and application in the generalized (fractional) calculus. Crit.
Rev. Biomed. Eng. 35, 447–553.
doi:10.1615/CritRevBiomedEng.v35.i6.10
(doi:10.1615/CritRevBiomedEng.v35.i6.10) CrossRef

PubMed Google Scholar
14. ↵Ford N, Simpson A. 2001 The numerical solution of
fractional differential equations: speed versus accuracy.
Numer. Algorithms 26, 333–346.
doi:10.1023/A:1016601312158
(doi:10.1023/A:1016601312158) CrossRef Web of Science
Google Scholar
15. ↵Sprouse BP, MacDonald ChL, Silva GA. 2010
Computational efficiency of fractional diffusion using adaptive
time step memory. In Proc. 4th IFAC Workshop Fractional
Differentiation and its Applications, Badajoz, Spain, 18–20
October 2010. (eds Podlubny I, Vinagre B, Fen YQ, Feliu V,
Tejado I. Article no. FDA10051.
Kosice, Slovakía: Technical
University of Kosice; and Badajoz, Spain: University of
Extremadura. Google Scholar
16. ↵Blank L. 1996 Numerical treatment of differential equations
of fractional order. Numerical Analysis Report no. 287.
Manchester Center for Computational Mathematics.
Google Scholar
17. ↵Dubois F, Mengué S. 2003 Mixed collocation for fractional
differential equations. Numer. Algorithms 34, 303–311.
doi:10.1023/B:NUMA.0000005367.21295.05
(doi:10.1023/B:NUMA.0000005367.21295.05) CrossRef
Web of Science Google Scholar
18. ↵Quintana Murillo J, Yuste SB. 2011 An explicit difference
method for solving fractional diffusion and diffusion–wave
equations in the Caputo form. J. Comput. Nonlinear Dyn. 6,
021014. doi:10.1115/1.4002687 (doi:10.1115/1.4002687)

Matrix approach to discrete fractional… | Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences

نوشته شده توسط علی رضا نقش نیلچی  | لینک ثابت |
ریاضیات...
ما را در سایت ریاضیات دنبال می کنید

برچسب : رویکرد,ماتریسی,محاسبات,کسری,گسسته,شبکه,های,غیرهم,طول,با,متغیر,طول,پله,مرتبه,های,توزیع,شده, نویسنده : 9math1342d بازدید : 237 تاريخ : شنبه 28 مرداد 1396 ساعت: 2:26